Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Microbiol ; 204(5): 274, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449342

RESUMO

The Staphylococcus aureus SdrG protein is glycosylated by SdgA and SdgB for protection against its degradation by the neutrophil cathepsin G. So far, there is no information about the role of Staphylococcus epidermidis SdgA or SdgB in biofilm-forming; therefore, the focus of this work was to determine the distribution and expression of the sdrG, sdgA and sdgB genes in S. epidermidis under in vitro and in vivo biofilm conditions. The frequencies of the sdrG, sdgA and sdgB genes were evaluated by PCR in a collection of 75 isolates. Isolates were grown in dynamic (non-biofilm-forming) or static (biofilm-forming) conditions. The expression of sdrG, sdgA and sdgB was determined by RT-qPCR in cells grown under dynamic conditions (CGDC), as well as in planktonic and sessile cells from a biofilm and cells adhered to a catheter implanted in Balb/c mice. The sdrG and sdgB genes were detected in 100% of isolates, while the sdgA gene was detected in 71% of the sample (p < 0.001). CGDC did not express sdrG, sdgA and sdgB mRNAs. Planktonic and sessile cells expressed sdrG and sdgB, and the same was observed in cells adhered to the catheter. In particular, one isolate, capable of inducing a biofilm under treatment with cathepsin G, expressed sdrG and sdgB in planktonic and sessile cells and cells adhering to the catheter. This suggests that bacteria require biofilm conditions as an important factor for the transcription of the sdgA, sdgB and sdrG genes.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Catepsina G , Glicosiltransferases/genética , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35026398

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) constitute important soil contaminants derived from petroleum. Poz14 strain can degrade pyrene and naphthalene. Its genome presented 9333 genes, among them those required for PAHs degradation. By phylogenomic analysis, the strain might be assigned to Amycolatopsis nivea. The strain was grown in glucose, pyrene, and naphthalene to compare their proteomes; 180 proteins were detected in total, and 90 of them were exclusives for xenobiotic conditions. Functions enriched with the xenobiotics belonged to transcription, translation, modification of proteins and transport of inorganic ions. Enriched pathways were pentose phosphate, proteasome and RNA degradation; in contrast, in glucose were glycolysis/gluconeogenesis and glyoxylate cycle. Proteins proposed to participate in the upper PAHs degradation were multicomponent oxygenase complexes, Rieske oxygenases, and dioxygenases; in the lower pathways were ortho-cleavage of catechol, phenylacetate, phenylpropionate, benzoate, and anthranilate. The catechol dioxygenase activity was measured and found increased when the strain was grown in naphthalene. Amycolatopsis sp. Poz14 genome and proteome revealed the PAHs degradation pathways and functions helping to contend the effects of such process.


Assuntos
Amycolatopsis , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Redes e Vias Metabólicas , Naftalenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo
3.
Microbiology (Reading) ; 168(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077343

RESUMO

Biotin is a key cofactor of metabolic carboxylases, although many rhizobial strains are biotin auxotrophs. When some of these strains were serially subcultured in minimal medium, they showed diminished growth and increased excretion of metabolites. The addition of biotin, or genetic complementation with biotin synthesis genes resulted in full growth of Rhizobium etli CFN42 and Rhizobium phaseoli CIAT652 strains. Half of rhizobial genomes did not show genes for biotin biosynthesis, but three-quarters had genes for biotin transport. Some strains had genes for an avidin homologue (rhizavidin), a protein with high affinity for biotin but an unknown role in bacteria. A CFN42-derived rhizavidin mutant showed a sharper growth decrease in subcultures, revealing a role in biotin storage. In the search of biotin-independent growth of subcultures, CFN42 and CIAT652 strains with excess aeration showed optimal growth, as they also did, unexpectedly, with the addition of aspartic acid analogues α- and N-methyl aspartate. Aspartate analogues can be sensed by the chemotaxis aspartate receptor Tar. A tar homologue was identified and its mutants showed no growth recovery with aspartate analogues, indicating requirement of the Tar receptor in such a phenotype. Additionally, tar mutants did not recover full growth with excess aeration. A Rubisco-like protein was found to be necessary for growth as the corresponding mutants showed no recovery either with high aeration or aspartate analogues; also, diminished carboxylation was observed. Taken together, our results indicate a route of biotin-independent growth in rhizobial strains that included oxygen, a Tar receptor and a previously uncharacterized Rubisco-like protein.


Assuntos
Rhizobium etli , Rhizobium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotina/metabolismo , Receptores de Aminoácido , Rhizobium/genética , Rhizobium/metabolismo , Rhizobium etli/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
4.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884834

RESUMO

Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis' EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis' EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis' EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble ß1/ß2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.


Assuntos
Vesículas Extracelulares/metabolismo , Psoríase/terapia , Staphylococcus epidermidis/metabolismo , Animais , Antígenos Ly/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Humanos , Imiquimode/toxicidade , Interleucina-1/antagonistas & inibidores , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Infiltração de Neutrófilos , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/metabolismo , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Res Microbiol ; 172(2): 103796, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33412274

RESUMO

Previous studies have shown that biofilm-forming bacteria are deficient in tricarboxylic acid (TCA) cycle metabolites, suggesting a relationship between these cellular processes. In this work, we compared the proteomes of planktonic vs biofilm cells from a clinical strain of Staphylococcus epidermidis using LC-MS/MS. A total of 168 proteins were identified from both growth conditions. The biofilm cells showed enrichment of proteins participating in glycolysis for the formation of pyruvate; however, the absence of TCA cycle proteins and the presence of lactate dehydrogenase, formate acetyltransferase, and acetoin reductase suggested that pyruvate was catabolized to their respective products: lactate, formate and acetoin. On the other hand, planktonic cells showed proteins participating in glycolysis and the TCA cycle, the pentose phosphate pathway, gluconeogenesis, ATP generation and the oxidative stress response. Functional networks with higher interconnection were predicted for planktonic proteins. We propose that in S. epidermidis, the relative absence of TCA cycle proteins is associated with the formation of biofilms and that lactate, formate and acetoin are the end products of partial glucose metabolism.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Proteoma , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Metabolismo dos Carboidratos , Cromatografia Líquida , Ciclo do Ácido Cítrico , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Glicólise , Humanos , Proteômica , Infecções Estafilocócicas/microbiologia , Espectrometria de Massas em Tandem
6.
Front Microbiol ; 9: 2765, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519218

RESUMO

Gram-negative bacteria release outer membrane vesicles (OMVs) into the extracellular environment. OMVs have been studied extensively in bacterial pathogens, however, information related with the composition of Aeromonas hydrophila OMVs is missing. In this study we analyzed the composition of purified OMVs from A. hydrophila ATCC® 7966TM by proteomics. Also we studied the effect of OMVs on human peripheral blood mononuclear cells (PBMCs). Vesicles were grown in agar plates and then purified through ultracentrifugation steps. Purified vesicles showed an average diameter of 90-170 nm. Moreover, 211 unique proteins were found in OMVs from A. hydrophila; some of them are well-known as virulence factors such as: haemolysin Ahh1, RtxA toxin, extracellular lipase, HcpA protein, among others. OMVs from A. hydrophila ATCC® 7966TM induced lymphocyte activation and apoptosis in monocytes, as well as over-expression of pro-inflammatory cytokines. This work contributed to the knowledge of the composition of the vesicles of A. hydrophila ATCC® 7966TM and their interaction with the host cell.

7.
BMC Genomics ; 19(1): 645, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165827

RESUMO

BACKGROUND: Rhizobia are alpha-proteobacteria commonly found in soil and root nodules of legumes. It was recently reported that nitrogen-fixing rhizobia also inhabit legume seeds. In this study, we examined whole-genome sequences of seven strains of rhizobia isolated from seeds of common bean (Phaseolus vulgaris). RESULTS: Rhizobial strains included in this study belonged to three different species, including Rhizobium phaseoli, R. leguminosarum, and R. grahamii. Genome sequence analyses revealed that six of the strains formed three pairs of highly related strains. Both strains comprising a pair shared all but one plasmid. In two out of three pairs, one of the member strains was effective in nodulation and nitrogen fixation, whereas the other was ineffective. The genome of the ineffective strain in each pair lacked several genes responsible for symbiosis, including nod, nif, and fix genes, whereas that of the effective strain harbored the corresponding genes in clusters, suggesting that recombination events provoked gene loss in ineffective strains. Comparisons of genomic sequences between seed strains and nodule strains of the same species showed high conservation of chromosomal sequences and lower conservation of plasmid sequences. Approximately 70% of all genes were shared among the strains of each species. However, paralogs were more abundant in seed strains than in nodule strains. Functional analysis showed that seed strains were particularly enriched in genes involved in the transport and metabolism of amino acids and carbohydrates, biosynthesis of cofactors and in transposons and prophages. Genomes of seed strains harbored several intact prophages, one of which was inserted at exactly the same genomic position in three strains of R. phaseoli and R. leguminosarum. The R. grahamii strain carried a prophage similar to a gene transfer agent (GTA); this represents the first GTA reported for this genus. CONCLUSIONS: Seeds represent a niche for bacteria; their access by rhizobia possibly triggered the infection of phages, recombination, loss or gain of plasmids, and loss of symbiosis genes. This process probably represents ongoing evolution that will eventually convert these strains into obligate endophytes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Phaseolus/microbiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/genética , Sementes/genética , Simbiose , DNA Bacteriano , Rhizobium/classificação , Rhizobium/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA
8.
FEMS Microbiol Lett ; 364(23)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121239

RESUMO

argC encodes N-acetyl-gamma-glutamyl phosphate reductase, the enzyme that catalyzes the high-energy-consuming third step in the arginine synthesis pathway. A comparative analysis revealed two translation start sites in argC from Sinorhizobium meliloti. To determine whether both protein versions are synthesized in the organism and their functional role, we obtained genetic constructs with one (1S) or two (2S) start sites, with promoters of low (pspeB) or high (plac) transcriptional rate. The constructs were transferred to the S. meliloti 1021 derivative argC mutant strain. Both protein versions were found in the free-living proteomes, but only ArgC 1S showed post-translational modification. Expression levels from argC 1S were five times higher than those of 2S, when transcribed by plac, and in concordance, its protein activity was 3-fold greater. The overexpression of both versions under plac delayed cellular growth. Inoculation of Medicago sativa plants with the S. meliloti strain harboring the argC 1S under plac induced nodulation but not nitrogen fixation. However, the strain with the argC 2S under the same promoter had a positive phenotype. Overproduction of ArgC protein for the synthesis of arginine induced physiological and symbiotic effects.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Nódulos Radiculares de Plantas , Sinorhizobium meliloti , Aldeído Oxirredutases/genética , Arginina/metabolismo , Proteínas de Bactérias/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/microbiologia , Medicago sativa/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia
9.
Microb Pathog ; 103: 139-148, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28017900

RESUMO

In the Staphylococcus aureus ATCC25923 strain, the flqB mutation in the 5'untranslated region (5'UTR) of the norA gene causes increased norA mRNA expression and high efflux activity (HEA). The involvement of the norA gene 5'UTR in HEA has not been explored in S. epidermidis; therefore, we examined the function of this region in S. epidermidis clinical isolates. The selection of isolates with HEA was performed based on ethidium bromide (EtBr) MIC values and efflux efficiency (EF) using the semi-automated fluorometric method. The function of the 5'UTR was studied by quantifying the levels of norA expression (RT-qPCR) and by identifying 5'UTR mutations by sequence analysis. Only 10 isolates from a total of 165 (6.1%) had HEA (EtBr MIC = 300 µg/ml and EF ranged from 48.4 to 97.2%). Eight of 10 isolates with HEA had the 5'UTR 95ΔG mutation. Isolates carrying the 95ΔG mutation had higher levels of norA expression compared with those that did not. To corroborate that the 95ΔG mutation is involved in HEA, a strain adapted to EtBr was obtained in vitro. This strain also presented the 95ΔG mutation and had a high level of norA expression and EF, indicating that the 95ΔG mutation is important for the HEA phenotype. The 95ΔG mutation produces a different structure in the Shine-Dalgarno region, which may promote better translation of norA mRNA. To our knowledge, this is the first report to demonstrate the participation of the 5'UTR 95ΔG mutation of the norA gene in the HEA phenotype of S. epidermidis isolates. Here, we propose that the efflux of EtBr is caused by an increment in the transcription and/or translation of the norA gene.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Deleção de Sequência , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Antibacterianos/farmacologia , Biofilmes , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade
11.
BMC Genomics ; 17: 711, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601031

RESUMO

BACKGROUND: Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules. RESULTS: In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions. CONCLUSIONS: Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful occupancy of the new niche. The genome of the strains had features possibly related to their presence in the seeds. This study helps to understand traits of rhizobia involved in seed adaptation.


Assuntos
Genoma Bacteriano , Nitrogênio/metabolismo , Phaseolus/microbiologia , Proteômica/métodos , Rhizobium/fisiologia , Análise de Sequência de DNA/métodos , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Tamanho do Genoma , Genômica , Filogenia , Plasmídeos/genética , Locos de Características Quantitativas , Rhizobium/classificação , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Sementes/microbiologia , Especificidade da Espécie
12.
Electron. j. biotechnol ; 19(5): 12-20, Sept. 2016. ilus
Artigo em Inglês | LILACS | ID: lil-797332

RESUMO

Background: Methyl tert-butyl ether (MTBE) is a pollutant that causes deleterious effects on human and environmental health. Certain microbial cultures have shown the ability to degrade MTBE, suggesting that a novel bacterial species capable of degrading MTBE could be recovered. The goal of this study was to isolate, identify and characterize the members of a bacterial consortium capable of degrading MTBE. Results: The IPN-120526 bacterial consortium was obtained through batch enrichment using MTBE as the sole carbon and energy source. The cultivable fraction of the consortium was identified; of the isolates, only Stenotrophomonas maltophilia IPN-TD and Sphingopyxis sp. IPN-TE were capable of degrading MTBE. To the best of our knowledge, this report is the first demonstrating that S. maltophilia and Sphingopyxis sp. are capable of degrading MTBE. The degradation kinetics of MTBE demonstrated that S. maltophilia IPN-TD had a significantly higher overall MTBE degradation efficiency and rate (48.39 ± 3.18% and 1.56 ± 0.12 mg L-1 h-1, respectively) than the IPN-120526 consortium (38.59 ± 2.17% and 1.25 ± 0.087 mg L-1 respectively). The kinetics of MTBE removal by both cultures fit first-order and pseudo-first-order reaction models. Conclusions: These findings suggest that S. maltophilia IPN-TD in axenic culture has considerable potential for the detoxification of MTBE-contaminated water.


Assuntos
Microbiologia do Solo , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/metabolismo , Éteres Metílicos/metabolismo , Biodegradação Ambiental , Gasolina , Cinética , Reação em Cadeia da Polimerase , Poluição Ambiental , Consórcios Microbianos , Éteres Metílicos/análise
13.
Syst Appl Microbiol ; 38(4): 287-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25660942

RESUMO

Phylogenomic analyses showed two major superclades within the family Rhizobiaceae that corresponded to the Rhizobium/Agrobacterium and Shinella/Ensifer groups. Within the Rhizobium/Agrobacterium group, four highly supported clades were evident that could correspond to distinct genera. The Shinella/Ensifer group encompassed not only the genera Shinella and Ensifer but also a separate clade containing the type strain of Rhizobium giardinii. Ensifer adhaerens (Casida A(T)) was an outlier within its group, separated from the rest of the Ensifer strains. The phylogenomic analysis presented provided support for the revival of Allorhizobium as a bona fide genus within the Rhizobiaceae, the distinctiveness of Agrobacterium and the recently proposed Neorhizobium genus, and suggested that R. giardinii may be transferred to a novel genus. Genomics has provided data for defining bacterial-species limits from estimates of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH). ANI reference values are becoming the gold standard in rhizobial taxonomy and are being used to recognize novel rhizobial lineages and species that seem to be biologically coherent, as shown in this study.


Assuntos
Agrobacterium/classificação , Agrobacterium/genética , Genoma Bacteriano/genética , Rhizobium/classificação , Rhizobium/genética , DNA Bacteriano/genética , Genômica , Filogenia
14.
Microb Pathog ; 79: 8-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25549879

RESUMO

Biofilm formation on medical and surgical devices is the main virulence factor of Staphylococcus epidermidis. A recent study has shown that norspermidine inhibits and disassembles the biofilm in the wild-type Bacillus subtilis NCBI3610 strain. In this study, the effect of norspermidine on S. epidermidis biofilm formation of clinical or commensal strains was tested. Biofilm producing strains of S. epidermidis were isolated from healthy skin (HS; n = 3), healthy conjunctiva (HC; n = 9) and ocular infection (OI; n = 19). All strains were treated with different concentrations of norspermidine, spermidine, putrescine, and cadaverine (1, 10, 25, 50 and 100 µM), and the biofilm formation was tested on microtiter plate. Besides, cell-free supernatants of S. epidermidis growth at 4 h and 40 h were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to detect norspermidine. Results showed that norspermidine at 25 µM and 100 µM prevented the biofilm formation in 45.16% (14/31) and 16.13% (5/31), respectively; only in one isolate from OI, norspermidine did not have effect. Other polyamines as spermidine, putrescine and cadaverine did not have effect on the biofilm formation of the strains tested. Norspermidine was also capable to disassemble a biofilm already formed. Norspermidine was detected in the 40 h cell-free supernatant of S. epidermidis by GC-MS. Norspermidine inhibited the biofilm development of S. epidermidis on the surface of contact lens. In this work, it was demonstrated that S. epidermidis produces and releases norspermidine causing an inhibitory effect on biofilm formation. Moreover, this is the first time showing that clinical S. epidermidis strains have different sensitivity to norspermidine, which suggest that the composition and structure of the biofilms is varied. We propose that norspermidine could potentially be used in the pre-treating of medical and surgical devices to inhibit the biofilm formation.


Assuntos
Antibacterianos/metabolismo , Biofilmes/efeitos dos fármacos , Espermidina/análogos & derivados , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Olho/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pele/microbiologia , Espermidina/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/metabolismo
15.
Appl Environ Microbiol ; 80(18): 5644-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002426

RESUMO

Rhizobial bacteria are commonly found in soil but also establish symbiotic relationships with legumes, inhabiting the root nodules, where they fix nitrogen. Endophytic rhizobia have also been reported in the roots and stems of legumes and other plants. We isolated several rhizobial strains from the nodules of noninoculated bean plants and looked for their provenance in the interiors of the seeds. Nine isolates were obtained, covering most known bean symbiont species, which belong to the Rhizobium and Sinorhizobium groups. The strains showed several large plasmids, except for a Sinorhizobium americanum isolate. Two strains, one Rhizobium phaseoli and one S. americanum strain, were thoroughly characterized. Optimal symbiotic performance was observed for both of these strains. The S. americanum strain showed biotin prototrophy when subcultured, as well as high pyruvate dehydrogenase (PDH) activity, both of which are key factors in maintaining optimal growth. The R. phaseoli strain was a biotin auxotroph, did not grow when subcultured, accumulated a large amount of poly-ß-hydroxybutyrate, and exhibited low PDH activity. The physiology and genomes of these strains showed features that may have resulted from their lifestyle inside the seeds: stress sensitivity, a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, a homocitrate synthase (usually present only in free-living diazotrophs), a hydrogenase uptake cluster, and the presence of prophages. We propose that colonization by rhizobia and their presence in Phaseolus seeds may be part of a persistence mechanism that helps to retain and disperse rhizobial strains.


Assuntos
Fixação de Nitrogênio , Phaseolus/microbiologia , Rhizobium/classificação , Rhizobium/metabolismo , Sinorhizobium/classificação , Sinorhizobium/metabolismo , Simbiose , Dados de Sequência Molecular , Oxirredutases/genética , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Análise de Sequência de DNA , Sinorhizobium/genética , Sinorhizobium/isolamento & purificação
16.
Can J Microbiol ; 58(9): 1063-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22906238

RESUMO

Staphylococcus aureus employs a heme sensing system (HssR-HssS) and a heme-regulated transporter efflux pump (HrtA-HrtB) to avoid the accumulation of heme, which is toxic at high concentrations. The detoxification system to heme has not been studied in Staphylococcus epidermidis . In this work, the hssR, hssS, hrtA, and hrtB genes were detected, and their expression when stimulated by hemin in S. epidermidis was explored. In silico genomic analyses exhibited that the genetic organization of the hssRS and hrtAB genes was identical in 11 Staphylococcus species analyzed, including S. epidermidis. Slight variations were found in their syntenic regions. The predicted secondary structure of HrtAB proteins from these species was almost identical to these of S. aureus. Additionally, hrtAB promoter sequences of some species were analyzed, and 1 or 2 different nucleotide substitutions were found in the downstream motif. Concentrations of hemin above 5 µmol/L inhibited S. epidermidis growth. However, S. epidermidis that was pre-exposed to a subinhibitory hemin concentration (1 µmol/L) was able to grow when inoculated into medium containing above 5 µmol/L hemin. The expression levels of hrtA and hrtB genes in S. epidermidis exhibited a significant difference when they were stimulated with hemin. Our results suggest that the HrtAB could be involved in hemin detoxification of S. epidermidis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Perfilação da Expressão Gênica , Ordem dos Genes , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/crescimento & desenvolvimento
17.
Clin Dev Immunol ; 2012: 352493, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242036

RESUMO

The outer membrane vesicles (OMVs) from smooth B. melitensis 16 M and a derived rough mutant, VTRM1 strain, were purified and characterized with respect to protein content and induction of immune responses in mice. Proteomic analysis showed 29 proteins present in OMVs from B. melitensis 16 M; some of them are well-known Brucella immunogens such as SOD, GroES, Omp31, Omp25, Omp19, bp26, and Omp16. OMVs from a rough VTRM1 induced significantly higher expression of IL-12, TNFα, and IFNγ genes in bone marrow dendritic cells than OMVs from smooth strain 16 M. Relative to saline control group, mice immunized intramuscularly with rough and smooth OMVs were protected from challenge with virulent strain B. melitensis 16 M just as well as the group immunized with live strain B. melitensis Rev1 (P < 0.005). Additionally, the levels of serum IgG2a increased in mice vaccinated with OMVs from rough strain VTRM1 consistent with the induction of cell-mediated immunity.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Citocinas/biossíntese , Células Dendríticas/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteômica
18.
Biol Direct ; 6: 48, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21970442

RESUMO

BACKGROUND: Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements. RESULTS: We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge. CONCLUSIONS: These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Genes Bacterianos , Estrutura Secundária de Proteína , Rhizobiaceae/genética , Proteínas de Bactérias/genética , Fenômenos Químicos , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Evolução Molecular , Ponto Isoelétrico , Proteínas de Membrana/química , Proteínas de Membrana/genética , Filogenia , Rhizobiaceae/química , Rhizobiaceae/classificação , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Sintenia
19.
J Bacteriol ; 193(2): 460-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075924

RESUMO

Several factors can influence ortholog replacement between closely related species. We evaluated the transcriptional expression and metabolic performance of ortholog substitution complementing a Sinorhizobium meliloti argC mutant with argC from Rhizobiales (Agrobacterium tumefaciens, Rhizobium etli, and Mesorhizobium loti). The argC gene is necessary for the synthesis of arginine, an amino acid that is central to protein and cellular metabolism. Strains were obtained carrying plasmids with argC orthologs expressed under the speB and argC (S. meliloti) and lac (Escherichia coli) promoters. Complementation analysis was assessed by growth, transcriptional activity, enzymatic activity, mRNA levels, specific detection of ArgC proteomic protein, and translational efficiency. The argC orthologs performed differently in each complementation, reflecting the diverse factors influencing gene expression and the ability of the ortholog product to function in a foreign metabolic background. Optimal complementation was directly related to sequence similarity with S. meliloti, and was inversely related to species signature, with M. loti argC showing the poorest performance, followed by R. etli and A. tumefaciens. Different copy numbers of genes and amounts of mRNA and protein were produced, even with genes transcribed from the same promoter, indicating that coding sequences play a role in the transcription and translation processes. These results provide relevant information for further genomic analyses and suggest that orthologous gene substitutions between closely related species are not completely functionally equivalent.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sinorhizobium meliloti/fisiologia , Agrobacterium tumefaciens/enzimologia , Aldeído Oxirredutases/genética , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobium etli/enzimologia , Análise de Sequência de DNA , Sinorhizobium meliloti/genética
20.
BMC Microbiol ; 8: 121, 2008 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-18638408

RESUMO

BACKGROUND: The sequenced genomes of the Brucella spp. have two urease operons, ure-1 and ure-2, but there is evidence that only one is responsible for encoding an active urease. The present work describes the purification and the enzymatic and phylogenomic characterization of urease from Brucella suis strain 1330. Additionally, the urease reactivity of sera from patients diagnosed with brucellosis was examined. RESULTS: Urease encoded by the ure-1 operon of Brucella suis strain 1330 was purified to homogeneity using ion exchange and hydrophobic interaction chromatographies. The urease was purified 51-fold with a recovery of 12% of the enzyme activity and 0.24% of the total protein. The enzyme had an isoelectric point of 5, and showed optimal activity at pH 7.0 and 28-35 degrees C. The purified enzyme exhibited a Michaelis-Menten saturation kinetics with a Km of 5.60 +/- 0.69 mM. Hydroxyurea and thiourea are competitive inhibitors of the enzyme with Ki of 1.04 +/- 0.31 mM and 26.12 +/- 2.30 mM, respectively. Acetohydroxamic acid also inhibits the enzyme in a competitive way. The molecular weight estimated for the native enzyme was between 130-135 kDa by gel filtration chromatography and 157 +/- 7 kDa using 5-10% polyacrylamide gradient non-denaturing gel. Only three subunits in SDS-PAGE were identified: two small subunits of 14,000 Da and 15,500 Da, and a major subunit of 66,000 Da. The amino terminal sequence of the purified large subunit corresponded to the predicted amino acid sequence encoded by ureC1. The UreC1 subunit was recognized by sera from patients with acute and chronic brucellosis. By phylogenetic and cluster structure analyses, ureC1 was related to the ureC typically present in the Rhizobiales; in contrast, the ureC2 encoded in the ure-2 operon is more related to distant species. CONCLUSION: We have for the first time purified and characterized an active urease from B. suis. The enzyme was characterized at the kinetic, immunological and phylogenetic levels. Our results confirm that the active urease of B. suis is a product of ure-1 operon.


Assuntos
Brucella suis/classificação , Brucella suis/enzimologia , Urease/imunologia , Urease/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Brucella suis/efeitos dos fármacos , Brucella suis/imunologia , Brucelose/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Filogenia , Tioureia/farmacologia , Urease/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...